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The formation of shock waves in transonic flows is a problem which is far from being 
resolved. Conventional gas dynamics contains numerous examples of the construction of 
transonic flows free of discontinuities and flows in which discontinuities occur in the 
transition through the speed of sound (see [I], for example). Experiments have confirmed 
the existence of both continuous [2] transonic flows and transonic flows containing 
discontinuities [3]. The exceptional nature of nonshock flow in a local supersonic region 
was shown in [4], which suggested to one author that continuous stagnation of a transonic 
flow is not possible [5]. In the opinion Kuo and Sirs [6], such a flow is either unstable 
or contains shock waves or both. One possible approach to solving this problem is the study 
of transonic flows for their stability in relation to steady and nonsteady disturbances 
that might develop in the flow due to irregularities on the walls bounding the flow or the 
arrival of weak nonsteady waves at the sonic line. Such an investigation is complex in the 
general case, with approximate methods usually being used to obtain a solution. 

The stability of a transonic flow relative to small nonsteady disturbances in a small 
neighborhood of the sonic line was examined in [7, 8] on the basis of a quasi-unidimen- 
sional approximation. An attempt to perform an analysis in general form was made in [9], 
where results agreeing with the data in [7] were obtained after certain simplifying assump- 
tions were made. Kuz'min [i0] analyzed the stability of a transonic flow on the basis of 
linearization of the Linn-Reissner-Tsien equation. It was found that transonic flow is 
stable in relation to a small change in the shape of the walls of the nozzle and the 
conditions at the inlet if the acceleration of the specified flow is everywhere positive. 

The examples of steady continuous transonic flows that have been constructed exist 
only near certain types of solid boundaries, thus giving rise to the view that such flows 
are the exception. A study of the behavior of steady perturbations of such flows due to 

irregularities in the walls bounding the flow will make it possible to study the develop- 

ment of the features of the flow. 
Aspects of the formation of shock waves and the conditions for nonshock flow in 

transonic flows were examined in [II]. It was shown that shock waves form if the slope of 
the walls of the channel near the mouth of the nozzle is too gentle. Discontinuities may 
form at a point on the sonic line or downstream, in the supersonic region. Numerical 
calculations of plane transonic flow with a local supersonic zone have shown that a shock 

wave is formed inside the region of supersonic flow [12]. 
Below, we examine the behavior of steady and nonsteady perturbations of steady 

transonic flows of a vibrationally relaxing gas. 
Use of the methods in [8] makes it possible to reduce the problem of determining the 

stability of a transonic flow against small nonsteady distortions to the study of a certain 
nonlinear partial differential equation. Analysis of the solutions of this equation for 
specific states of the medium shows that flow with a transition from the supersoni c regime 
to the subsonic regime is stable relative to small distortions if the gas is in the 
equilibrium state or if it is nonequilibrium with unexcited vibrational degrees of freedom. 
In this case, transonic flow will also be stable in the course of the transition from the 

subsonic to the supersonic regime. 
In our study of the behavior of steady distortions, we examined the supersonic region 

of transonic flow. We derive the equations of the transonic approximation as in traditional 
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gas dynamics. We do not suppose that the parameters in the perturbation region are 

necessarily small relative to the deviations of their values from the values at the speed 

of sound (transonic approximation). We employed the shortwave approximation [13] to analyze 

the behavior of the perturbations. It was found that the latter decay in an accelerating 
flow and grow in decelerating flow. The relaxation process connected with the excitation of 

vibrational degrees of freedom of the molecules leads to additional decay of the perturba- 

tions. 
Thus, a continuously stagnating transonic flow may exist in a stream of vibrationally 

relaxing gas. As a result, continuous transonic flow may also occur about a body in the 
stream. Such flow may be accompanied by the formation of local supersonic zones. 

!. The system of equations describing plane or axisymmetric steady flow of a gas with 

allowance for vibrational relaxation has the form 

roy = O, 9 (uux + vuu) + Px = O, 9 (uv~ + vv~) + Pu = O, (pu)~ + (pv)~ + u 

up~  + v p  v - a 2 (u9~ + you) = - p (? - t) (uek~ + veA~), 

+ very = F ,  

w h e r e  p i s  d e n s i t y ;  p i s  p r e s s u r e ;  u a n d  v a r e  t h e  c o m p o n e n t s  o f  v e l o c i t y  a l o n g  t h e  x a n d  y 
a x e s ,  r e s p e c t i v e l y ;  e k a n d  e k i s  t h e  e n e r g y  a s s o c i a t e d  w i t h  t h e  v i b r a t i o n a l  d e g r e e s  o f  
freedom of the molecules of the gas and its equilibrium value; a is the stagnated speed of 
sound; w is the inverse relaxation time; ? is the adiabatic exponent; u = 0 and I for plane 
and axisymmetric flows; and the subscripts x and y denote differentiation with respect to 

the corresponding coordinate. 
We take the following relations [14] for e k and 

o) = kap exp ( - -  k2T-~/3), e~ = BOk/(exp (Ok/T) - -  i ) .  

Here, R is the gas constant; T is the translational temperature; 0 k is the characteristic 
vibrational temperature; and k I and k 2 are vibrational constants dependent on the properties 
of the gas [14]. 

The linear theory of steady-state flow of a vibrationally relaxing gas [15] gives 

(+ 2) 
u = u0 ( t  - -  6 ~ = ) ,  v = - -  u o S q ) ~ u ,  P = ? P o  - -  6 M 0 q ~ =  , 

P=Po(l+6 = w 6 O u u ) ,  e h =  

( 1 . 2 )  

i X . . . .  f" = }'x - -  A ~ J }'n exp (A (~l - -  x)) w h e r e  * =  1"; r  = V M - ~ - - t ( ] " @ A ] ' ) ;  *yu  ( M ~ - - I ) ( f ' @ 2 A H @ A = / ) ;  i. 
0 

\ 

dB)/ ~M~--I; 5~ I; M is the Mach number," A is (1.2) a parameter characterizing the relaxa- 
l 

tion process; and Y is a function determining the initial profile of the perturbation. It 
is evident that at M0 2 ~ I, ~xx ~ ~, ~ ~ 0 ~xy is finite. Thus, the flow parameters u, p, 
and p increase to infinity and e k and v approach constants. We will examine a transonic 
flow which is close to a constant equilibrium flow with sonic velocity along the x axis (a 
zero subscript will be used to denote the parameters of this flow). The above-obtained 
asymptotes (1.2) substantiate the use of the following flow-parameter expansion in the 
study of transonic flow: 

u = a o ( t + z u l ) ,  v=-ao'~3/2vl ,  P = ? P o  + ~ P l ,  O = P o ( l  +~cOJ), eA=ao(eko+'r2el,~), (1.3) 

Here, we change over to new coordinates: @ = x/L, ~ = yll-~/L .j (L is the characteristic length). 
We also introduce the quantities 

- -  - - *  * 2 to = coL/uo, eh = eh/ao. 

Using (1.3), we obtain 

u ~ - -  a 2 = a~T ( 2 u ,  - -  Vp~ + PO, V M ~ - -  I ---- ~ f ~  V 2u~ - -  ~p] + p, .  
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We reduce the equations of system (i.i) to their characteristic form [13]. Making use 
of the notation below 

d_~ 0 uv + a~ ] f  M--Y"~'~-- i 0 d o 0 v 0 

we have  

a :  a :  1/M-r:-_i d :  [(V-- t) r :~, ] 
v - ~ - - u - - ~ - T -  v az -- [ -T_--=~ + y ( ~ - - E ) .  x 

•  

dz  - -  - tt2 _ a'2 "' P ~ - -  dz  

doP a2 do__..P _ P ('V - -  t.) F doeh __ F doll _ v 
- -  d z  u ' d z  u ' d z  u 

(1.4) 

The first equation of system (1.4) is written along the acoustic characteristic. The 
equation of this characteristic is reduced to the equation of the second characteristic 
(the characteristic pertains to the first family when the top sign is chosen and to the 
second family when the bottom sign is chosen). The following three equations are written 
along the streamline. The equation of the streamline is the last equation in system (1.4). 

Retaining the principal (in terms of ~) terms, after we insert expansion (1.3) into 

system (1.4) we obtain the equations of the transonic approximation (the terms that remain 
have the order ~3/2 in the first equation and the order r in the second equation; it is 

assumed that ~0 has the order r; the bars above x and y are omitted): 

d• I d• 1 ~ [ -- Vl v ] 
T ehl + T J '  --T- ] / 2 u ~ -  ~P1 + P1 a~ = -+- V2~1 _ v& + PI x L (~ - 1) % -" 

i d l Y  t d~ d~ = d~ d~ ~ 0, d~ ( 1 . 5 )  
d ~ =  4- V2ul--~Pl  @91 dx @ ~  0, dx dx ~ - ~ 0  

- .  - ,2 Oh, ) 
eh1=yehoexp~o (ypi--91) �9 We omit the equations of system (1.4) which determines e~ and 

would give principal terms of the order T 2. The first two equations of system (1.5) have 

meaning only when 2u I - ?Pl + Pl > 0~(the region of supersonic flow). 
Let there be a steady-state distortion in the flow due to irregularities on the walls 

bounding the flow. The parameters of the determined flow can be represented by the sums 

uL + uH, vl + vll, pi + pit, Pl + pit, 

where the first terms correspond to the known transonic flow and the second terms corre- 

spond to the steady-state distortion. 
The parameters of the undisturbed flow can be determined in the form of a series in 

the space coordinates x and y. Having connected the origin of the coordinate system with 
the sonic line and examining flow in a small neighborhood of this line, we can restrict 
ourselves to allowance for the leading terms of the series. It is convenient to represent 
system (1.5) in the following form. Choosing the top sign in the first equation of the 

system, we obtain 

[ a~ ~ dp~ ~ ( v _  ~) ~ ~ + . ( 1 . 6 )  
dx ] / 2 u l - - Y P l + V l d - f x  -- V 2 u 1 _ ~ p l + v l  

Adding ( 1 . 6 )  and t h e  f i r s t  e q u a t i o n  o f  s y s t e  m ( 1 . 5 )  a f t e r  c h o o s i n g  t h e  b o t t o m  s i g n  in  the  
l a t t e r ,  we have  

vl~ + ply ---- O. ( 1 . 7 )  
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M<J-----.-~oj~ M < /  I M < r  x 
M > I  ,,z' OI  .-,.- 

Fig. i Fig. 2 

then differentiate Eq. (1.6) with respect to x and use Eqs. (1.5) and (1.7) to obtain a 
nonlinear partial differential equation in u1: 

((? + t) u~u,~),, - u ~  - -  ~ -  u ~  + Eu~,~ = 0 

E = "7" ? (Y -- 1)2 ~176176 exp . 

In conventional gas dynamics (in the absence of relaxation ~0 ~ 0) (1.8) we obtain 
the equation of the Karman-Guderlei approximation [16]: 

(~x ~ = ul). Equations (1.8) and (1.9) are of the mixed type: hyperbolic at (7 + l)ul > 0, (7 + 

I) ~x ~ > 0 and elliptic at (7 + l)ul < 0, (7 + I) ~x ~ < 0. Two types of steady transonic 
flows named after their discoverer - Maier [16] and Taylor [17] - were constructed for 

(1.9). The parameters of the flows are represented in the form a of series in the space 
coordinates x and y (see Figs. i and 2 for the introduction of the coordinates). We 
construct similar solutions for Eq. (1.8). 

For a flow of the Maier type, we assign a change in the longitudinal velocity U which 
is linear with respect to x (Maier hypothesis). In addition, for physical reasons we assume 

that the flow is symmetric relative to the x axis (the expansion contains the terms y2, 

y4.). Instead of the components of velocity Ul, vi, it is convenient to introduce the flow 

potential ~ such that u i = ~x, vl = ~y. The coefficients of the potential expansion in x and 
y can be obtained by substitution of the expansion into Eq. (1.9): 

a _~ a ( E + a ( V + t ) )  a ( E + a ( ~ , + l ) )  2 V4 . 
qJm = T x: 2 (v + t) xY2 + ---8 (v + 1) (v + 3) 

(if0) 

Flow with such a potential is an accelerating transonic flow at ~ > O. 

We can use the potential to determine the streamlines and, thus, the boundaries of 
the flow. We find from the boundary conditions that 

1 ~ / E Z  4 ( 7 + 1 ) ( v + 1 )  

where Ys is the ordinate of the minimum cross section of the nozzle; and R s is the curvature 
of the nozzle in the minimum section. 

The sonic line is determined by the equality 

Ul ~0. 

Using (i.ii) and (I.I0), we can obtain the equation of the sonic line 

(iii) 

X - -  '(Y ) 4 ( v t t )  E +  f 2 j  4(%,+l)(vz--~R~y~ ' y2. 

The difference from conventional gas dynamics lies in the absence of the parameter E > 0. 

The sonic line in a relaxing gas is located farther downstream (except for the point x = 
y = 0 and is, therefore, more curved. 
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Taylor flow is also characterized by symmetry relative to the x axis. Insertion of an 
expansion of general form into Eq. (1.9) yields 

~t = - -  ~x 2 (? + t) + v + I xY2 

( 2 '+tW~Rs>O'  ' t u ) 8= v + t  = - - - f > 0 ,  q < < l .  

The s o n i c  l i n e  i s  d e t e r m i n e d  f rom Eq. ( 1 . 1 1 )  and has  t h e  form 

~+~+tE-"~-x+~x2 = ('r ~ y2. 

In conventional gas dynamics (w 0 ~ 0, E ~ 0), the sonic line bounds two regions of superson- 
ic flow around the walls of the nozzle. These regions are symmetric relative to the y axis 
(the flow field is also symmetric relative to the x axis). Relaxation disturbs the symmetry 
which exists relative to the y axis and displaces the supersonic region upstream. 

For the quantities with the subscripts Ii, corresponding to the perturbed state, we 
find from system (1.5) that 

e~ _ + - ~ V ~ + t ~ [ ( , , ~ +  - = + _  ~ - - E ~ ,  ( 1 . 1 2 )  

dig t 
d. = +-- V(~+t)(%+%1) '  u n = - - p n ,  Pn=Pn .  

The system which has been obtained shows that the given disturbance can be represent- 
ed as a set of waves (acoustic, entropic-vortical, relaxation) propagating along the 
characteristics of the corresponding families, If the characteristic length of a flow- 
disturbing irregularity on the wall L is sufficiently small, then the perturbation waves 
created by it will be short (from the leading to the trailing edges) and we will be able to 
ignore the mutual effect of perturbations propagating along the characteristics of 
different families. Let us examine an acoustic wave of the first family, determined by the 
first equation of system (I.12), with the selection of the top sign in this equations: 

dr11 2 ~ d U l ) 3 / 2  U1/g] = VllV Eun. 

The remaining perturbations will be considered zero perturbations: 

d~n" dy + ~ p r ~ 2  ~-d [(uli + ui) 31~ - -  t d / q  = O. 

This assumption is valid for Maier flows if the disturbances are due to only to small 
irregularities in the solid boundaries (walls) in the supersonic region of the flow. After 
having developed, such perturbations are carried downstream along the characteristics. The 
flow upstream of the perturbations can be considered undisturbed. 

The same pattern is seen for Taylor flows if the perturbations generated by irregu- 
larities of the wall inside the supersonic flow region die out within this region. If they 
do not, they reach the sonic line and enter the subsonic region. This disturbs the entire 
system, including the upstream flow. In this case, distortions which reach the wall also 
appear in the supersonic region. After reflection from the solid boundary, these distor- 
tions also contribute to the perturbations propagating away from the wall. In addition, 
perturbations arriving from the sonic line may themselves engender shock waves in the flow. 
However, this problem is outside the scope of the present study. 

The system of equations obtained above can be reduced to a single first-order 
differential equation which is nonhomogeneous, nonlinear, and, in the general case, 
nonintegrable: 

4 - -  ~ ~ ) ~  ~1~] = 2~ "%-g- i  ~ [ ( ~ 1 + ~ 0 ~ - ~  '~] ~1/'~ + t ~ [ ( ~ , ~ +  - - ~ - v ~  ~- a~ 

- -  Eu n + C, 
2 

We rewrite this equation as follows: 
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2 v  - -  d __ u ~ / 2 ]  
d/Zll --  ~"V"~ + ~'d-ff [(tt11-~ l t l )312 -- E/t11- ~ C d//'l V~II~- h"11-- Vr~I ( 1 .  13)  

dy --  V 4 (V -t- ~-) (/Z 1 "~ U11 ) dy ~r -]- g'll 

For normal gas dynamics (w ~ 0, E ~ 0) in the case of plane flow (u = 0), Eq. (1.13) 
has the form 

/: 
dy dg V u  i .~_ u i  i 

It is evident from this that the perturbations die out if the undisturbed flow accelerates 
(duz/dy > 0). Otherwise (if the flow is slowed (duz/dy < O) the perturbations grow. 
Relaxation occurring in the gas, permitting the excitation of vibrational degrees of 
freedom, leads the appearance of the term -EUll in Eq. (1.13) and thus results in additional 
decay of the perturbations. In the ease of axisymmetrie flow (w = i), divergence of the 
waves also weakens the distortions. 

The characteristics represented by nonlinear equation (1.12) may intersect, with a 
shock wave being formed at the point of intersection. This point (the beginning of the 
shock wave) can be found from the equation 0y\0y 0 = 0. Let the solution of Eq. (1.13) have 
the form uzl = uzz(y, Y0)- Finding the derivative ay/0y 0 from (1.12), we represent the 
condition of intersection of the characteristics as 

dY_g.._~ I ~ f O u n  t dg = O. 
dg o 2 V ? - ~ - i  J ~ ( ] / r ~ )  3 " 

It follows from this that the characteristics can intersect only when aull/ay 0 > 0, i.e., 
shock waves are obtained only from distortions containing sections on which the velocity 
increases in the reaction across the flow (compressive distortions). 

2. Let us examine a system of equations of nonsteady quasi-unidimensional gas flow 
permitting excitation of vibrational degrees of freedom: 

l I dS 
ut -~- uux @ -~ Px : O, Pt q- upx "~ 9a2ux = - -  p (y  - -  1) F - -  9ua 2 S dz' 

z 
T ( s t - j - U S x ) : - - F ,  e h t q - u e h x :  F, F : o . ) ~ e h - - e h ) .  

(2 .1)  

Here, u is gas velocity; s is the entropy associated with the translational degrees of 
freedom of the gas molecules; S is the area of the cross section of the stream t~e; and 
the subscripts x and t denote differentiation with respect to the corresponding coordinate. 

The steady transonic flow whose stability we will study is described by a system of 
equations which follows from system (2.1) when we ignore the time dependence of the flow 
parameters in the latter: 

. . . . . .  ~ ,, i dS 
9UUx q- p x =  O, upx-] - t )au~= - - p ( ? - -  i ) F - - g u a "  S dx' T u B  x ~ _ ~g 

From here, we easily obtain 

i [ e - l ) F +  ~ t ~s] 
d-7 = ~ L--~--- TTk-~ " (2.2) 

Let the velocity of the steady-state flow reach the speed of Sound [5 = ~ (and M = 
i)] at the point x = 0 of the x axis. The existence of a continuous nonsteady flow with 
crossing of the sound barrier requires satisfaction of a condition which follows from 
(2.2): 

I(v~ i___); = 
s ~Ix=0" (2.3) 
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It follows from (2.2) that the release of energy as a result of vibrational excita- 
tion of molecules of the gas (F < 0) accelerates the subsonic flow (~2 < I) and slows the 

supersonic flow (~2 > I). In a nonequilibrium gas with unexcited vibrational degrees of 
freedom (F > 0), the subsonic flow is slowed due to the transfer of energy into internal 
degrees of freedom. The supersonic flow is accelerated in this case. 

A change in the cross section of the stream tube (contraction or expansion) is 
analogous to the static effect of vibrational relaxation in the sense that contraction of 
the tube (for example) results in the same acceleration of the flow as relaxation of the 
vibrational degrees of freedom of the gas. 

In a gas with frozen vibrational degrees of freedom, the sound barrier can be crossed 
only when dS/dx = 0 (minimum stream-tube cross section). 

In accordance with (2.3), in a vibrationally excited gas (F < 0) we should have dS/dx > 
0 at M = i, and the crossing of the sound barrier takes place in the expanding part of the 
stream tube. In a nonequilibrium gas with unexcited vibrational degrees of freedom (F > 0), 
it follows from (2.3) (with M = i) that we must have dS/dx < 0 - the crossing of the sound 
barrier occurs in the contracting part of the stream tube. 

Another necessary condition for the existence of continuous transonic flow is 
stability flow in regard to small perturbations [8]. 

We will examine a small neighborhood of the point corresponding to the transition 
through the speed of sound x = 0 [-5, 5] (it is assumed that 5 << i). We introduce a new 
space variable x" = x/6 and expand the flow parameters into series in the small quantity 6 

in the neighborhood of the point x = 0: 

u = ao + 8ul (x', t) + 82u2 (x', t) + . . . .  

p = p o  + 5p~(x', t ) +  5~2(z ' ,  t ) + . . . ,  9 = po + @~(x',  t ) +  ~2p~(x', t ) +  . . . .  ( 2 . 4 )  
s = s o + S s l ( x ' ,  t )+ 82s2(x ', t )+ . . . .  e~=eko + 6e~1(x', t )+ 82e~2(x ", t )+ . . . .  

Here, the zero subscript denotes values of the parameters of the gas flow at the point x = 
0. The subsequent terms correspond to deviations from the values at this point due to a 
steady change in the main flow and weak nonsteady distortions in this flow. 

Inserting expansions (2.4) into system (2.1), in the zeroth approximation with 

respect to 6 we have 

poaoUl~ ' + PI~' = O, aoP ~, + ?pou~, = O, 
aoSlx, = O, aoehlx, ~ O, 

from which 

aopl + 7poui = O, sl = O, ek~ = O. (2.5) 

In the first approximation for 6, it follows from (2.1) that 

Pit q- ulPlx' + aoPix' -k ? (PlUa~" -k poUi,; ') = (? - -  1)[(91(~ q- Pd~ e ; o -  

--e~o) -k- Oo(oo(e~-- e~) ]  [ %PlaoPo+ U~po po(T_l)coo(e~* ~ --eho) 4- 

/d2 ln$  ~ x , ]  "o~176 J' 
Po (ul, + ulul~, + aou~') + plaoUl~, + Pi~' --- O, 

s i t  - k  uasl=, q -  aoS~.x ' = 

System (2.6) is degenerate relative to the unknowns Pz, uz, sz, and ek2 and has a solution 
only in the case of satisfaction of the compatibility condition for the system of equations 

(v - I)[(pi% + p0~1) (~0 - e,,0) + ~0% (e.*~ - ~i)] - 

[ Oo~ + ~,,0 . {d~ 1.___As'~ ~,] 
�9 ~ o  .Oo (v - t),% ( ~ o  - ~0 )  + polo \ d~  )o + p~, - ~ p ~ ,  - vp,~,~, + Oo~o ( ~ ,  + ulu~,) + o~a'o~, = O. 
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TABLE i 

%, K Tlt, K o), see -I ~, see -I 13, s e e -  2 7, m Gas 

N 2 3395 I00 31,98 --0,0086 105 0,5 

N~ 3395 300 31,98 --0,0033 t0 ~ 0,5 

N 2 3395 t000 31,98 i5,02 t0~ 0,506 

N~ 3395 2000 31,98 97,1i t0 ~ 0,5349 

CO 3080 300 7199 -- i ,759 93 840 0,5 

CO 3080 500 7199 t59,4 92 550 0,5589 

0 2 2239 300 21.10 ~ --4427 87 970 0,5 

With allowance for (2.5), the compatibility condition reduces to the equation for c=~ui: 

ct ~ ccx '  = ~ c  ~ ~ x ' .  ( 2 . 7 )  

Here 

v ( v -  t) ~ % a; (e~o - e~o) ~ n q  ~- " i 
(v + I) a~ 

6 -  (2v+ ~>~ [ t {dS '"-- (d2S ) ] 
(V+l fSo  ~ k  ~zx.po ~ o " 

~,,e~o exp ; 

Equation (2.7) can be rewritten in the form of an independent system of ordinary differen- 

tial equations: 

de T I~x, dz '  
d---[ = 0~r r ~ , - ' f [  = C. 

(2.8) 

The solutions of system (2.8) in the neighborhood of the singular point c = x" = 0 were 

studied qualitatively in [8]. It follows from the results that it is possible to classify 

flows of a vibrationally relaxing gas as follows when the sound barrier is crossed: stable 
transonic flow at ~ < 0; unstable transonic flow at a > 0, except for the case fl > 0, 

dul/dx" > 0. It should be noted that a > 0 with sufficiently strong excitation of the 
vibrational degrees of freedom. 

,,, Oh 
, Y%o exp ~ o  

eko - -  eho > ( 2 . 9 )  

Let us examine specific conditions for flows of a vibrationally relaxing gas. If we 

study a flow of an equilibrium gas, we find that ek0* = ek0. In the minimum cross section of 
the stream tube (dS/dx) 0 = 0 and (dZS/dx2)0 > 0, so that ~ < 0 and fl > 0. In this case, 
flows crossing the sound barier from either region (from subsonic to supersonic or from 
supersonic to subsonic) are stable. 

Sufficiently strong excitation of the vibrational degrees of freedom (see (2.9)) 

causes ~ to be positive. Here, ek0* < ek 0 and (dS/dx)0 > 0. If in this case fl < O, (i.e.,) 

(dZS/dx2) 0 < (dS/dx)0Z/S0 then the transonic flow becomes unstable (this includes flows 

undergoing a transition of the subsonic-supersonic type). Thus, a flow changing from the 
subsonic to the supersonic regime is unstable in a vibrational excited gas flowing through 
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a channel with a cross section that decreases at a constant or increasing rate. If ~ > 0 
(when the stream tube expands very rapidly), then transonic flow with a subsonic-supersonic 
transition is stable and flow with a supersonic-subsonic transition is unstable. 

If the gas is nonequilibrium in the sense that ek0U* > eko , then ~ < 0. However, in 
this case (dS/dx) 0 < 0, and the cases ~ < 0 (constant or increasing contraction of the 
stream tubes) and ~ > 0 (decreasing contraction of the stream tubes) are possible. All 
possible transonic flows are stable in both the first and second cases. 

Let us calculate the coefficients ~ and ~ for specific gases on the basis of the data 
in [14]. Let the cross-sectional area of the stream tube be determined from the formula 

s =  l - ~ ( , t - ~ ) ,  O ~ l .  
The following values are taken for pressure and temperature: p = 101,320 Pa, T = 300 K. In 
accordance with the given state parameters of the gas, we determine the critical point and 
calculate ~ and ~ at this point. The results of the calculations, presented in Table i, 
show that vibrational excitation of molecules of nitrogen and carbon monoxide changes 
stable transonic flows of these gases into unstable flows. Transonic flows of molecular 
oxygen are stable, since vibrational excitation of the molecules of this gas rapidly 
relaxes to equilibrium. 

The results obtained here can be used in problems involving the transonic flow of a 
gas through a nozzle and problems concerning flow about a body in the case when a local 
supersonic region is formed. 

We thank A. G. Kulikovsii for discussing the results of the study with us. 
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